Khoa học dữ liệu là ngành được nhiều bạn trẻ quan tâm trong vài năm trở lại đây và có xu hướng tiếp tục tăng trong tương lai. Đây cũng là ngành đòi hỏi bạn cần phải update kiến thức liên tục, không ngừng trau dồi học hỏi. Dù bạn có chuyên môn là phân tích và xử lý số liệu, hay kinh doanh thì việc tìm hiểu về phân tích, xử lý, trình bày số liệu là một kiến thức không thể thiếu. Trước khi giới thiệu về 10 cuốn sách, chúng ta hãy cùng lướt qua một vài khái niệm cơ bản về Khoa học dữ liệu nhé!
1. Khái niệm
Khoa học dữ liệu (Data Science)
Khoa học dữ liệu là khoa học về việc quản trị và phân tích dữ liệu để tìm ra các hiểu biết, các tri thức hành động, các quyết định dẫn dắt hành động.
Về mặt chuyên môn, khoa học dữ liệu phát triển dựa trên sự kết hợp của Toán học và Công nghệ thông tin mà đại diện tiêu biểu là các chuyên ngành thống kê hay Học máy (Machine learning).
2. 10 cuốn sách về Khoa học dữ liệu nên đọc nhất năm 2024
Sau đây mình sẽ giới thiệu một số cuốn sách dành cho mọi đối tượng từ người không có bất kỳ nền tảng nào về Khoa học dữ liệu cho tới các chuyên gia. Những nhà lãnh đạo và quản lý doanh nghiệp đang tìm cách áp dụng Khoa học dữ liệu cho doanh nghiệp cũng nên tham khảo. Tuy nhiên, tất cả những cuốn sách này đều được viết bằng tiếng Anh (hầu hết sách về công nghệ đều như vậy) vì vậy kĩ năng ngôn ngữ là điều kiện tối cần thiết để có thể tiếp thu kiến thức từ những cuốn sách này.
1. The Art of Data Science — dành cho bất kỳ đối tượng nào làm việc liên quan tới Khoa học dữ liệu
Tác giả: Roger D. Peng và Elizabeth Matsui
Cuốn sách này cung cấp một cái nhìn bao quát về các thuật ngữ và quy trình phân tích dữ liệu. Với kinh nghiệm dày dặn trong việc phân tích dữ liệu, các tác giả đã chắt lọc ra được những kiến thức tổng quan nhất có thể áp dụng được cho cả những người mới tìm hiểu cho tới những người quản lý trong lĩnh vực khoa học dữ liệu.
2. The Art of Statistics — hướng dẫn cách thu thập thông tin từ dữ liệu
Tác giả: David Spiegelhalter
Được viết bởi nhà thống kê nổi tiếng David Spiegelhalter, The Art of Statistics chỉ cho độc giả cách thu thập kiến thức từ dữ liệu thô. Dựa trên các ví dụ thực tế, tác giả cho chúng ta thấy cách thống kê có thể giúp xác định hành khách may mắn nhất trên tàu Titanic, hayliệu một kẻ giết người hàng loạt khét tiếng có thể bị bắt sớm hơn hay không. Cuốn sách hướng dẫn chúng ta tiếp cận nhiều vấn đề bằng cách sử dụng số liệu thống kê như một chuyên gia thực thụ.
3. Storytelling with Data — hướng dẫn hình ảnh hóa dữ liệu
Tác giả: Cole Nussbaumer Knaflic
Đây là một cuốn sách nên đọc cho những ai muốn trình bày thông tin một cách rõ ràng và dễ hiểu hơn. Cuốn sách này dạy bạn các nguyên tắc cơ bản về trực quan hóa dữ liệu và cách giao tiếp hiệu quả với dữ liệu. Các bài học trong cuốn sách này sẽ giúp bạn biến dữ liệu của mình thành những câu chuyện trực quan có tác động lớn tới khán giả của bạn.
4. Good Charts — hướng dẫn hình ảnh hóa dữ liệu thông minh hơn, thuyết phục hơn
Tác giả: Scott Berinato
Cuốn sách này đưa ra một hệ thống để tư duy trực quan và xây dựng các biểu đồ tốt hơn thông qua quá trình phác thảo và tạo mẫu. Good Charts sẽ giúp bạn biến các biểu đồ tẻ nhạt, chỉ đơn thuần là trình bày thông tin thành những hình ảnh trực quan thông minh, hiệu quả, truyền tải ý tưởng một cách mạnh mẽ.
5. Introduction to Machine Learning with Python — cung cấp kiến thức cơ bản về các thuật toán ML
Tác giả: Andreas C Muller và Sarah Guido
Cuốn sách này tập trung vào các khía cạnh thực tế của việc sử dụng các thuật toán học máy. Đây là nguồn tài nguyên tuyệt vời có thể giúp bạn bắt kịp kiến thức cơ bản về các thuật toán học máy được sử dụng rộng rãi nhất, bao gồm các kỹ thuật về cách xử lý dữ liệu, các phương pháp nâng cao để đánh giá mô hình và điều chỉnh tham số cũng như các phương pháp làm việc với dữ liệu văn bản. Nó thân thiện với người mới bắt đầu sử dụng mà không đòi hỏi người đọc có một nền tảng lập trình quá chuyên sâu. Tuy nhiên, mình khuyến khích bạn nên làm quen trước với thư viện NumPy và thư viện Matplotlib.
6. The Hundred Page Machine Learning Book — hướng dẫn tích hợp ML vào dự án dành cho các nhà quản lý hoặc nhà phát triển
Tác giả: Andriy Burkov
Một cuốn cẩm nang tuyệt vời dành cho các nhà quản lý hoặc nhà phát triển phần mềm muốn tích hợp ML vào dự án của họ mà không cần phải dành quá nhiều thời gian. Đây là một cuốn sách khá cô đọng về các khái niệm học máy, phù hợp với mọi đối tượng từ những người mới trong lĩnh vực này cho tới những chuyên gia muốn mở rộng thêm kiến thức.
7. AI and Machine Learning for Coders — hướng dẫn về AI dành cho lập trình viên
Tác giả: Laurence Moroney
Một cuốn sách cần có cho các lập trình viên mới bước vào lĩnh vực Trí tuệ nhân tạo hoặc cho bất kỳ ai có nền tảng kỹ thuật vững chắc đang tìm cách áp dụng AI trong các dự án. AI and Machine Learning for Coders hướng dẫn bạn cách triển khai các tình huống phổ biến nhất trong ML, chẳng hạn như thị giác máy tính, xử lý ngôn ngữ tự nhiên, mô hình trình tự,…
8. Deep Learning with Python — cung cấp hiểu biết về Deep Learning sử dụng ngôn ngữ Python
Tác giả: Francois Chollet
Được viết bởi người sáng tạo ra Keras và cũng là nhà nghiên cứu AI của Google – François Chollet, cuốn sách này cung cấp hiểu biết về Deep Learning sử dụng ngôn ngữ Python thông qua các giải thích trực quan và ví dụ thực tế.
9. Foundations of Deep Reinforcement Learning — lí thuyết và thực hành với ngôn ngữ Python
Tác giả: Laura Graesser và Wah Loon Keng
Một cuốn sách giáo khoa khá nâng cao về DRL, nơi các tác nhân nhân tạo học cách giải quyết việc ra quyết định theo trình tự. Một cuốn sách khá hay dành cho cho cả sinh viên khoa học máy tính và kỹ sư phần mềm, những người đã quen thuộc với các khái niệm học máy cơ bản và có hiểu biết về Python.
10. Deep Learning Illustrated — tài liệu tham khảo thực tế về thuật toán Deep learning
Tác giả: John Krohn, Grant Beyleveld, và Aglae Bassens
Đây là tài liệu tham khảo thực tế có thể giúp bạn xây dựng hiểu biết của mình về các thuật toán Deep Learning. Với tiêu chí làm cho lĩnh vực này trở nên thú vị hơn và có thể tiếp cận được nhiều đối tượng hơn, cuốn sách được trình bày khá đẹp mắt với nhiều hình minh họa đặc sắc.
Trên đây là một số gợi ý về những cuốn sách hay liên quan tới ngành Khoa học dữ liệu mà mình tổng hợp được từ nhiều nguồn. Nếu thấy hữu ích thì đừng quên lưu lại bài viết này và share cho bạn bè cùng biết nhé !